Data Profiling Guide  |  CONFIDENTIAL

DATA PROFILING
GUIDE

Statistics • Distributions • Patterns • Anomalies • Reporting

Version 1.0  |  January 2026


Table of Contents




1. Profiling Overview
Data profiling analyzes data to understand its structure, content, and quality. It's essential for data migration, integration, and establishing quality baselines.
1.1 Profiling Metrics
	Category
	Metrics
	Data Type

	Basic
	Row count, column count, data types
	All

	Completeness
	Null count, null percentage
	All

	Uniqueness
	Distinct count, duplicate count
	All

	Statistics
	Min, max, mean, stddev, percentiles
	Numeric

	String
	Min/max length, patterns, frequency
	String

	Temporal
	Min/max date, gaps, trends
	Date





2. PySpark Profiling
2.1 Basic Profile Function
from pyspark.sql.functions import *
from pyspark.sql.types import *

def profile_column(df, col_name):
    col_type = dict(df.dtypes)[col_name]
    total = df.count()
    
    stats = df.select(
        count(col(col_name)).alias('non_null'),
        countDistinct(col(col_name)).alias('distinct'),
        sum(when(col(col_name).isNull(), 1).otherwise(0)).alias('nulls')
    ).collect()[0]
    
    return {
        'column': col_name,
        'type': col_type,
        'total_rows': total,
        'non_null': stats['non_null'],
        'null_count': stats['nulls'],
        'null_pct': round(stats['nulls'] / total * 100, 2),
        'distinct_count': stats['distinct'],
        'unique_pct': round(stats['distinct'] / total * 100, 2)
    }

# Profile all columns
profile_results = [profile_column(df, c) for c in df.columns]
profile_df = spark.createDataFrame(profile_results)
2.2 Numeric Statistics
def profile_numeric(df, col_name):
    stats = df.select(
        min(col(col_name)).alias('min'),
        max(col(col_name)).alias('max'),
        avg(col(col_name)).alias('mean'),
        stddev(col(col_name)).alias('stddev'),
        expr(f'percentile({col_name}, 0.25)').alias('p25'),
        expr(f'percentile({col_name}, 0.50)').alias('median'),
        expr(f'percentile({col_name}, 0.75)').alias('p75')
    ).collect()[0]
    return dict(stats.asDict())

# Usage
claim_stats = profile_numeric(df, 'claim_amount')


3. String Analysis
3.1 String Length Analysis
def profile_string(df, col_name):
    return df.select(
        min(length(col(col_name))).alias('min_length'),
        max(length(col(col_name))).alias('max_length'),
        avg(length(col(col_name))).alias('avg_length')
    ).collect()[0].asDict()

# Pattern analysis
def detect_patterns(df, col_name, sample_size=1000):
    sample = df.select(col_name).limit(sample_size).collect()
    patterns = {}
    for row in sample:
        val = str(row[0]) if row[0] else ''
        # Convert to pattern (A=alpha, 9=digit, X=special)
        pattern = ''.join(['A' if c.isalpha() else '9' if c.isdigit() else c for c in val])
        patterns[pattern] = patterns.get(pattern, 0) + 1
    return sorted(patterns.items(), key=lambda x: -x[1])[:10]
3.2 Value Frequency
# Top N values
def top_values(df, col_name, n=10):
    return df.groupBy(col_name) \
        .count() \
        .orderBy(desc('count')) \
        .limit(n) \
        .collect()

# Frequency distribution
top_10 = top_values(df, 'status', 10)


4. Comprehensive Profile
4.1 Full Table Profile
def full_table_profile(df, table_name):
    results = []
    total_rows = df.count()
    
    for col_name in df.columns:
        col_type = dict(df.dtypes)[col_name]
        profile = {'table': table_name, 'column': col_name, 'type': col_type}
        
        # Basic stats
        profile.update(profile_column(df, col_name))
        
        # Type-specific
        if col_type in ['int', 'bigint', 'double', 'decimal']:
            profile.update(profile_numeric(df, col_name))
        elif col_type == 'string':
            profile.update(profile_string(df, col_name))
        
        results.append(profile)
    
    return results

# Run profile
profile = full_table_profile(claims_df, 'silver.claims')
profile_df = spark.createDataFrame(profile)
4.2 Store Profile Results
# Save to profile table
profile_df.write \
    .mode('append') \
    .saveAsTable('quality.data_profiles')

# Add metadata
profile_df = profile_df.withColumn('profile_date', current_timestamp())
profile_df = profile_df.withColumn('profile_run_id', lit(run_id))


5. Anomaly Detection
5.1 Statistical Anomalies
# Detect outliers using IQR
def detect_outliers(df, col_name):
    quantiles = df.approxQuantile(col_name, [0.25, 0.75], 0.05)
    q1, q3 = quantiles[0], quantiles[1]
    iqr = q3 - q1
    lower = q1 - 1.5 * iqr
    upper = q3 + 1.5 * iqr
    
    outliers = df.filter((col(col_name) < lower) | (col(col_name) > upper))
    return outliers.count(), lower, upper

outlier_count, low, high = detect_outliers(df, 'claim_amount')
5.2 Trend Analysis
# Compare current vs historical profile
def compare_profiles(current, historical):
    alerts = []
    if abs(current['null_pct'] - historical['null_pct']) > 5:
        alerts.append(f'Null % changed: {historical["null_pct"]} -> {current["null_pct"]}'
    if current['distinct_count'] < historical['distinct_count'] * 0.9:
        alerts.append('Distinct values dropped >10%')
    return alerts


6. Best Practices
6.1 Profiling Guidelines
1. Profile new data sources before integration
1. Run profiles after major ETL changes
1. Store historical profiles for trend analysis
1. Set up alerts for significant changes
1. Profile sample for very large tables
1. Document findings and data issues
6.2 Using Profile Results
1. Establish data quality baselines
1. Define validation rules from patterns
1. Identify data cleansing requirements
1. Understand data for modeling
1. Document data characteristics

Appendix: Document Information
	Document Title
	Data Profiling Guide

	Version
	1.0

	Last Updated
	January 2026


Page  of 
